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The onset of transition in a boundary layer is dependent on the initialization and
interaction of disturbances in a laminar flow. Here, theory and full Navier–Stokes
simulations focus on the transient period just after disturbances enter the boundary
layer. The temporal evolution of disturbances within a boundary layer is investigated
by examining a series of initial value problems. In each instance, the complete
spectra (i.e. the discrete and the continuum) are included so that the solutions can
be completely arbitrary. Both numerical and analytical solutions of the linearized
Navier–Stokes equations subject to the arbitrary initial conditions are presented. The
temporal evolution of disturbances during the transient period are compared with
the spatial evolution of the same disturbances and a strong correlation between the
two approaches is demonstrated indicating that the theory may be used for the
transient period of disturbance evolution. The theory and simulations demonstrate
that strong amplification of the disturbances can occur as a result of the inclusion
of the continuum in the prediction of disturbance evolution. The results further
show that any approach proposed for use in bypass boundary layer transition must
include the transient growth that results from the continuum. Finally, although a
connection between temporal and spatial evolution in the transient period has been
demonstrated, a theoretical basis as an explanation for this connection remains the
focus of additional study.

1. Introduction
The laminar boundary layer on a flat plate continues to be one of the most essential

prototypical shear flows in fluid mechanics. This flow is important not only because it
is a concept that has vast utility in many diverse physical situations, but also because
it is a flow that can be (and has been) probed extensively by use of all available means
from theory and experiment to numerical simulation. Still, even after nearly a full
century that has been spent in such effort, a complete and thorough understanding
of the behaviour of the flow in the presence of perturbations has not been obtained.
Many important questions remain to be answered before progress towards such goals
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as positive control disturbances in the flow or a means of retarding the transition
from a laminar to a turbulent state can be fully utilized in a practical configuration.

Traditionally, investigations of disturbances in the boundary layer have been char-
acterized using classical linear stability analysis. This concept is well founded and
is, in principle, correctly recognized as an initial-value problem. However, few real
calculations have actually been made in this pursuit, that is, calculations directed
at examining the details of specific initial-value problems. Instead, it was considered
sufficient to demonstrate that the flow was actually unstable and to determine the
physical explanation of the cause of any instability that might result. It was under-
stood that any perturbation that was introduced and regardless of the nature of the
origin, would meet the same fate. Once this process had begun, the flow must break
down and then ultimately would end in transition to turbulence. It is now known
that such conclusions are not necessarily correct and can even be misleading. It is for
this reason that a full knowledge of the dynamics of perturbations must be ascer-
tained so that a rational evaluation can be made. In short, it is a moot point that a
disturbance will eventually grow to large amplitudes asymptotically in an exponential
manner for large time if, during the early transient period, the perturbation behaves
quite differently. That such a different behaviour is possible has long been recognized
and is directly due to the fact that the bases for this problem are not those of
conventional wisdom. Even though linear, the problem presents difficulties for both
the analytical and the numerical treatments. Specifically, the differential equations are
not self-adjoint (although not presented in terms of the fluid mechanics, the mathe-
matical topic is discussed by one of original workers in this field, namely Sommerfeld
1949) and they are of the stiff variety, making numerical solutions difficult to obtain.
Moreover no solution can be expressed by a simple representation – except formally
– that makes it amenable for use for arbitrary initial-value calculations.

The details of any particular initial-value specification require far more information
than can be derived from the simple fact that the flow is unstable. Indeed, as already
suggested, the transient as well as the asymptotic state contains significant information.
The essential origins and recognition that the early time period should be noted are
due to Kelvin (1887) and Orr (1907a,b). More recently there has been a flurry of
activity in this area since it may be possible that explanations for events that are
known to take place during breakdown in the boundary layer may be forthcoming
by making a detailed examination of the early period. Results thus far are both
suggestive and promising but not necessarily uniformly accepted as the cause of
breakdown in the boundary layer. It is the purpose of this study to delve more deeply
into many of the details (and use the argument as far as may be rationally possible)
as well as put the problem on a firmer mathematical and practical foundation so that
other possible cases can be readily analysed. The method is a combined analytical–
numerical technique that allows for completely arbitrary initial values. And, although
not treated here, the technique has the ability to address the very important question
of receptivity of the boundary layer. It is also suggested that the physics is best
exploited in terms of the vorticity, a quantity that is more natural than the velocity
to problems of this variety.

Many of the extensive contributions that have been made for early-period dynamics
are for fully bounded shear flows. By contrast, full attention to the special needs of
the boundary layer is lacking. Butler & Farrell (1992) were primarily concerned with
optimal perturbation conditions in channel flows. However, using their results found
for these cases, they assumed that the boundary layer problem could be similarly
resolved by extension. More specifically, since the boundary layer is not bounded
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from above as it is in channel flow, there must be a continuous as well as a discrete
spectrum of eigenvalues when using normal mode solutions for the linear partial
differential equations to represent disturbance evolution in the flow. In recognizing
this fact, Butler & Farrell elected to approximate the continuous part of the spectrum
by a finite set of available modes and coupled this representation with a modification
to the boundary condition that requires disturbances to vanish in the far field. These
steps were logical because, when optimal conditions for channel flow were found to
be confined to the shear region very close to the walls, it was thought that a similar
argument could be made for the boundary layer. It will be shown here that these
assumptions will lead to the loss of important critical behaviour in the dynamics.

One early attempt to solve an initial-value problem for the laminar boundary
layer in the conventional sense was that due to Criminale & Kovasznay (1962).
But, in spite of the fact that it was correctly posed, this effort required significant
simplifying assumptions in order to extract any results whatsoever. The framework
was in terms of but a few normal modes and the computing was limited. As a result,
it was impossible to examine the early period and no mention of the continuous
spectrum was made at all. More recently, Breuer & Haritonidis (1990) made a far
more advanced investigation of this flow and it was done in a way that overcame all
of the difficulties experienced by Criminale & Kovasznay. The sole weakness here was
that the perturbation calculations were made for an inviscid fluid. A sequel paper by
Breuer & Kuraishi (1994) rectified this omission. Breuer and co-workers elected to use
a numerical scheme that combined a time integration of the linear partial differential
equations together with Chebyshev polynomials for the vertical spatial variation
rather than invoke the travelling wave modal form that is more common and was
used by Butler & Farrell. This scheme avoids the necessity of having to expand in
terms of the modes but removes the possibility of any free-stream interaction because
Chebyshev polynomials decay quite rapidly in the far field. It will be seen that this
constraint is too severe and will lead to the loss of important physics. Instead, as
definitively pointed out by Grosch & Salwen (1978) and Salwen & Grosch (1981),
perturbations should be considered merely as bounded rather than vanishing far
above the plate if one wishes to capture the effects of the continuous spectrum related
to the early period temporal behaviour.

Basically the issue for the transient period of the dynamics is the fact that there
can be algebraic growth in the amplitude of the perturbations even if there is ultimate
decay as time increases further. This has been shown in several ways. First, by
using Laplace transforms for the initial-value problem (Gustavsson 1979; Hultgren
& Gustavsson 1980), a branch cut as well as poles in the complex plane must be
evaluated when doing the inversions. This immediately denotes that the boundary
layer has the additional continuous spectrum and one genesis of algebraic behaviour.
Second, the eigenvalue problem that must be solved when using travelling wave
modal solutions is not one of the standard Sturm–Liouville form. The principal
governing equations are not self-adjoint and hence a system where eigenfunctions
are not mutually orthogonal must be anticipated. Thus, even at subcritical values of
the Reynolds number, where all eigenvalues are found to cause damping, an initial
algebraic growth must occur (Reddy & Henningson 1993; Trefethen et al. 1993, among
others). Third, there are two equations that must be considered for the full three-
dimensional perturbation problem, namely the Squire equation (normal vorticity)
together with that of Orr–Sommerfeld (velocity). This combination forms the basis
for possible direct resonance between the two sets of solutions and hence algebraic
behaviour would ensue. It appears, however, that although this possibility can occur
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for channel flows, the numerical calculations of Benney & Gustavsson (1981) have
shown that such interplay does not transpire in the boundary layer. Many authors
have demonstrated that the early algebraic growth can reach exceptionally large
amplitudes on a time scale shorter than that for a growing exponential mode. There
is a further belief that this kind of behaviour, even though stemming from a linear
system, is actually tantamount to promoting rapid transition and leads to what is
now known as bypass transition – strong amplification that is different from that
associated with an exponentially growing Tollmien–Schlichting wave.

Besides the general question of transition of the boundary layer, there is the need to
understand how this flow interacts with the free stream or, more simply, the receptivity
problem. This phenomenon makes this type of flow (as well as unbounded free shear
flows) different from that in channels. Not only is the boundary layer unstable but
it is clear that the dynamics can be influenced by disturbances, such as vorticity, in
the free stream. Due to the fact that the scales for such free-stream disturbances are
not at all commensurate with those corresponding to Tollmien–Schlichting waves,
analytical treatment of this problem has been difficult as can be seen by the review
of Goldstein & Hultgren (1989) for example. In this work it is suggested that the
boundary layer should be considered non-parallel or possess a surface roughness in
order to gain insight into receptivity. Otherwise, according to this reasoning, there
can be no coupling of the boundary layer with the free stream. It will be suggested
that an alternative means for exploration of this coupling is also possible and such
additional complexities may not be required to initiate the coupling.

Direct numerical simulations (DNS) of the Navier–Stokes equations for boundary-
layer flow have for the most part focused on computing the evolution of the discrete-
spectrum modes. Generally speaking these studies are directed at transition but at
least one has investigated an initial-value problem (Breuer & Landahl 1990). The
activity within the boundary layer is captured with DNS almost as if one had been
viewing an experiment but the finite limitations of the computational domain have
not fully resolved the receptivity problem. Then, many of the numerical studies have
been biased by the propensity to Tollmien–Schlichting waves. As has been noted, this
kind of process may not be the major cause of breakdown. More intensive work using
the general initial-value approach is still in order. In this way, a basis to compare
theory with DNS solutions can be established.

The theoretical problem is formulated in §2 and the formal solution in terms of
discrete and continuum eigenfunctions is discussed in §3. The numerical method of
solution is outlined in §4, and §5 presents results in terms of a normalized perturbation
energy for two- and three-dimensional disturbances, as well as a presentation of
optimal initial conditions. An analytic solution is presented in §6, and the importance
of the initial normal vorticity to the transient growth is evaluated. Results from
the temporal theory are compared with the equivalent transient test case in the
spatially evolving problem in §7. For the spatial results, a time and spatially accurate
direct numerical simulation code is employed. A brief description of the code is also
presented in §7. Finally, conclusions are given in §8.

2. Basic governing equations
For the Blasius flat-plate boundary layer, the fluid is incompressible with the

basic flow assumed parallel with U = U(y), V = W = 0. Then, the non-dimensional
linearized equations of motion can be written, with (u, v, w) the perturbation velocity
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components in the (x, y, z)-directions and p the perturbation pressure, as

∂u
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+
∂v

∂y
+
∂w

∂z
= 0, (1)
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Here, Re = 1.72078764Rδ∗ is the Reynolds number based on the displacement thick-
ness δ∗ =

∫ ∞
0

1−U(y) dy, U∞ the free-stream velocity and ν the kinematic viscosity.
Time is non-dimensionalized by the advective time scale. Using the Fourier transfor-
mations defined with respect to x and z, the pertubation velocities can be transferred
to wavenumber space as

v̆(α, y, β, t) =

∫ ∞
−∞

∫ ∞
−∞
v(x, y, z, t)ei(αx+βz) dx dz, (5)

where αδ∗ and βδ∗ are taken to be real non-dimensional wavenumbers in the x-
and z-directions, respectively. The transformations α = δ∗αδ∗ and β = δ∗βδ∗ relate the
wavenumbers based on the displacement thickness to these non-dimensional numbers.
Substituting (5) into equations (1) to (4) gives

−i(αδ∗ ŭ+ βδ∗w̆) +
∂v̆

∂y
= 0, (6)
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]
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with U ′ = dU/dy and γ̃2
δ∗ = α2

δ∗ + β2
δ∗ . Also, γ̃ = δ∗γ̃δ∗ .

The Squire transformation is written as

αδ∗ ŭ+ βδ∗w̆ = γ̃δ∗ ũ, (10)

−βδ∗ ŭ+ αδ∗w̆ = γ̃δ∗w̃, (11)

and combined with operations on (6) to (9) enables one to obtain the pair of equations[
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where U ′′ = d2U/dy2, sinφ = βδ∗/γ̃δ∗ and w̃ is proportional to the normal vorticity
component (ω̆y = iγ̃δ∗w̃). The first term on the right-hand side of (13) has been
denoted as vortex tilting that acts as forcing for the normal vorticity. This term
is a product of the mean vorticity in the spanwise direction (Ωz = −U ′) and the
perturbation strain rate (∂v/∂z) and, for a three-dimensional disturbance, gives rise
to the increase of the normal vorticity. It is clear that the solutions for (12) and (13)
combined with continuity and the Squire transformation are equivalent to solving (6)
to (9), including p̆. In either case, solutions of the equations are subject to imposed
initial conditions and the following boundary conditions at the plate:

v̆(0, t) =
∂v̆

∂y
(0, t) = w̃(0, t) = 0. (14)

Furthermore, all disturbances are to be considered bounded in the free stream. For
the mean velocity, the Blasius boundary layer solution, with U(y) = f′(y), is assumed
and is given by

f′′′ + 1
2
ff′′ = 0

subject to the conditions

f(0) = f′(0) = 0; f′(∞) = 1.

To evaluate the other velocity components, the quantities v̆ and w̃ are first computed
from (12) and (13). Then the Squire transformation, (10) and (11), when combined
with (6) can be inverted to give

ŭ = − i cosφ

γ̃δ∗

∂v̆

∂y
− sinφw̃, (15)

and

w̆ = − i sinφ

γ̃δ∗

∂v̆

∂y
+ cosφw̃. (16)

By knowing the velocity, the vorticity perturbations can be determined in a straight-
forward manner by appealing to the definitions, namely

ω̆x =
∂w̆

∂y
+ iβδ∗ v̆, (17)

ω̆y = −iβδ∗ ŭ+ iαδ∗w̆ ≡ iγ̃δ∗w̃, (18)

and

ω̆z = −iαδ∗ v̆ − ∂ŭ

∂y
(19)

in Fourier space.
Finally, we remark here that, if one seeks solutions for (12) and (13) of the form

e−iωtf(y), then these equations become the more familiar Orr–Sommerfeld and Squire
equations. Solutions of these equations are the classical normal modes or travelling
wave solutions and usually the transient dynamics and effects of various initial
conditions are ignored. However, at subcritical Reynolds numbers, where all normal
modes are damped, the transient behaviour may be extremely important as has been
shown for viscous channel flows (see Gustavsson 1991; Butler & Farrell 1992; Reddy
& Henningson 1993; Criminale et al. 1997). Indications of similar importance for
the boundary layer have been given by Gustavsson (1979), Hultgren & Gustavsson
(1980) and Butler & Farrell (1992).
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3. Formal representation of the solution
The solution to (12) and (13) contains both a discrete set of eigenvalues and a

continuum and, once an initial condition is prescribed, the solution can be written
as a linear combination of the two sets (see Salwen & Grosch 1981). We summarize
here only some of the points relevant to the present work.

Salwen & Grosch (1981) provided a completeness argument that showed any
solution to (12), together with an initial condition, can be written as

v̆ =

N∑
j=1

Aje
iωjtφj(y) + Vc(y, t), (20)

where N is the number of discrete modes, φj are the eigenfunctions, and Vc(y, t)
is the continuum. The amplitude factors Aj and the frequencies ωj are in general
functions of γ̃δ∗ and Re. Once an initial condition has been prescribed, use of the
orthogonality principle between the eigenfunctions and the adjoint eigenfunctions
allows the amplitude factors Aj and the continuum Vc to be found. Although this
procedure is mathematically correct formally, it is of limited practical use when
studying transient behaviour because of the difficulty in the expansion process. Instead,
we will carefully solve the system (12) and (13) numerically for a given prescribed
initial condition which, by default, will contain both the discrete and the continuum
within its solution set.

Before we proceed further, it should be remembered that N, the number of discrete
modes, is finite for φ < 90◦ and zero for φ = 90◦. To show that only a continuum
exists, consider a three-dimensional disturbance with φ = 90◦ (i.e. αδ∗ = 0 and
γ̃δ∗ = βδ∗). The basic equations, (12) and (13), reduce to

∂

∂t

(
∂2v̆

∂y2
− β2

δ∗ v̆

)
= R−1

δ∗

[
∂4v̆

∂y4
− 2β2

δ∗
∂2v̆

∂y2
+ β4

δ∗ v̆

]
(21)

and
∂w̃

∂t
= U ′v̆ + R−1

δ∗

[
∂2w̃

∂y2
− β2

δ∗w̃

]
. (22)

Note that the first equation is independent of the mean flow U. As such, Gustavsson
(1979) and Salwen & Grosch (1981) have shown that the solution can be written as

v̆(y, t) =

∫ ∞
0

ak(β)φβδ∗ k(y)e−(β2
δ∗+k

2)t/Rδ∗ dk, (23)

where the eigenfunctions are given by

φβδ∗ k(y) =

(
2

π

)1/2
k

β2
δ∗ + k2

[
e−|βδ∗ |y − cos(ky) + |β|k−1 sin(ky)

]
, (24)

and the coefficients are found by applying the initial condition

ak(βδ∗) =

∫ ∞
0

v̆(y, 0)φβδ∗ k(y)dy. (25)

Thus, there are no discrete eigenmodes but rather only a continuum of eigenfunctions.
Salwen & Grosch (1981) have also shown that this solution decays in time as

v̆ ≈ t−1/2e−β
2
δ∗ t/Rδ∗ as t→∞.

Several remarks concerning the case φ = 90◦ are in order. Since only the continuum
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Grid points Growth rate

500 0.00285574
1000 0.00285181
2000 0.00284947
4000 0.00284961

Table 1. The numerically computed growth rate of a two-dimensional Tollmien–Schlichting wave
as a function of number of grid points. Re = 103, γ̃ = 0.24, φ = 0.

solution exists, the Blasius boundary layer is asymptotically stable at all wavenumbers
β and at all Reynolds numbers. In all the cases considered here, the normalized growth
of v̆ decays for all time, indicating that the observed transient growth is due entirely
to the presence of the forcing term U ′v̆ in the Squire equation. Thus, it is the existence
of a continuum of eigenfunctions that produces algebraic instability (defined below)
as given by the large transient algebraic growth under these conditions. The argument
that it is the non-normality of the linear Orr–Sommerfeld and Squire operators, as
might be the case in bounded channel flows, does not apply here.

4. Numerical solutions
The partial differential equations (12) and (13) were solved numerically by the

method of lines (see e.g Ames 1977). This choice is a convenient numerical method;
other techniques are possible. The spatial derivatives were centre differenced on a
uniform grid and the resulting system was then integrated in time by a fourth-order
Runge–Kutta scheme. All calculations were done in 64-bit precision. The results were
checked for convergence by increasing the number of mesh points. For verification,
table 1 shows the numerically computed growth rate of a two-dimensional Tollmien–
Schlichting wave as a function of grid points for Re = 103, γ̃ = 0.24 and φ = 0◦.
Growth rates were computed by integrating the equations forward in time beyond the
transient until the growth rate, defined as ωi = ln |E(t)|/2t where |E| is the amplitude
of the perturbation energy defined below, asymptotes to a constant value.

The value obtained from an Orr–Sommerfeld solver is 0.00284962. No effort was
made to optimize the number of grid points by employing non-uniform meshes. If
this was done, far fewer grid points would be needed. All calculations presented in
this paper used 5000 grid points and thus represent grid-independent solutions.

Before investigating the effects of various initial conditions and their subsequent
transient behaviour, it is instructive to compare the numerically computed growth
rates to those using the Orr–Sommerfeld equation at supercritical Reynolds numbers.
Figure 1(a) shows the post-transient growth rates obtained from the numerical solution
of (12) (shown as circles) and those obtained from the Orr–Sommerfeld equation
(shown as the solid curve) for Re = 103 and φ = 0◦. As expected, the agreement is
excellent. To demonstrate the strength of the procedure, figure 1 also shows similar
results but at Re = 104 (b) and Re = 105 (c).

5. Perturbation energy
As mentioned above, the effects of various initial conditions and the subsequent

transient behaviour at subcritical Reynolds numbers is the major focus of the present
study. The energy density in the (γ̃, φ)-plane as a function of time is computed and is
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Figure 1. Plot of growth rate versus wavenumber for two-dimensional disturbances, φ = 0.
Circles represent growth rates calculated by numerical integration, and solid curves are growth
rates obtained from the Orr–Sommerfeld equation (normal mode solution). Reynolds numbers: (a)
Re = 103, (b) Re = 104, and (c) Re = 105.

defined as

E(t; γ̃, φ, Re) =

∫ ∞
0

[|(ŭ− ŭ∞)2|+ |(v̆ − v̆∞)2|+ |(w̆ − w̆∞)2|] dy, (26)

where ()∞ denotes values at infinity, which may be a function of time. Note that in
using this definition we have allowed for disturbances that are bounded at infinity.
The total energy of the perturbation can be found by integrating (26) over all γ̃ and φ.
A growth function can be defined in terms of the normalized energy density, namely

G(t; γ̃, φ, Re) =
E(t; γ̃, φ, Re)

E(0; γ̃, φ, Re)
, (27)

that effectively measures the growth of the energy at time t for a prescribed initial
condition at t = 0. For cases where it is known that the solution is asymptotically
stable for large time, we use the bases that, if G > 1 for some time t > 0, then the
flow is said to be algebraically unstable; if G = 1 for all time, the flow is algebraically
neutral; and, if G < 1 for all time, the flow is algebraically stable.

5.1. Response to a particular initial condition

We first show selected results for a particular initial condition given by a Gaussian,
namely

v̆ = V0

(
y

y0

)2

e−(y−y0)2/σ, w̃ = 0, (28)

centred at y0 with width determined by σ; V0 can, of course, be a function of γ̃
and φ. This initial value is chosen so that the boundary conditions at y = 0 are
satisfied. Figure 2(a) is a plot of the normalized energy G(t) for γ̃ = 0.24, φ = 0◦,
Re = 103, σ = 0.25 and for various values of y0. From this plot we see that for
each value of y0, the perturbation energy grows exponentially in accordance with
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Figure 2 (a–c). Normalized energy G versus time using initial condition (28) with Re = 103 and
σ = 0.25. (a) γ̃ = 0.24, φ = 0◦, and y0 = 2, 4, 6, 8, 10, 12, (b) γ̃ = 0.4, φ = 90◦, and y0 = 2, 4, 5, 6, 7, 8;
and (c) γ̃ = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, φ = 90◦, and y0 = 2. (d) Maximum over time of normalized
energy G versus wavenumber with Re = 103 and σ = 0.25; φ = 90◦ and y0 = 2.

classical stability theory. However, the time at which the eventual exponential growth
is initiated depends on the location of the Gaussian initial condition. That is, as the
location moves further out of the boundary layer (recall that the boundary layer edge
is at y ≈ 5), the time at which exponential growth occurs also increases. What might
not be expected is that even for y0 = 8, which lies outside the boundary layer, a
Tollmien–Schlichting wave is still generated. This can be explained by appealing to
the general solution given by (20). Since any solution can be expanded in terms of
the discrete modes and the continuum and since the initial condition is not entirely
contained within the continuum, there must be a non-zero coefficient for all discrete
modes. The non-zero coefficient for the unstable discrete mode, no matter how small,
eventually gives rise to the observed exponential growth shown in figure 2(a). This
observation is also noted and discussed in the work of Hill (1995), which should
be reviewed for more details. And, more importantly, this point can be completely
missed if one ignores the effect of initial conditions and instead relies entirely on
the classical stability framework. This revelation is important and could have critical
consequences in the areas of receptivity and flow control and will be the subject of
future investigations.

Also shown are results for φ = 90◦ (figure 2b). Recall that at this angle only the
continuum exists and there are no normal modes. In this case, increasing the location
of the Gaussian y0 results in a decrease in the maxima of the perturbation energy. In
figure 2(c) we show the effect of varying γ̃ for φ = 90◦ and with y0 = 2. Note that the
maximum of G increases with increasing γ̃. However, as shown in figure 2(d) where
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the maximum of G in time (denoted by Gmax) for a given fixed wavenumber is shown,
the maximum does not increase without bound. The largest value of Gmax = 119.6
occurs for γ̃ = 1.4. The idea of determining the largest possible value of Gmax for a
set of initial conditions is explored in the next section.

5.2. Optimal initial conditions

Since the strong amplification of disturbances during the initial period has been
proposed as a mechanism for bypass transition, it is worthwhile to ascertain what
the maximum growth may be during this period and whether such growth is to be
expected from arbitrary disturbances or whether the disturbance must have special
properties to achieve the maximum growth. For the problem of bounded channel
flow, Criminale et al. (1997) showed that a set of functions different from the (non-
orthogonal) eigenfunctions can be readily employed to answer such a question.
That technique is appropriately modified here to investigate the maximum transient
growth allowed by the linearized Navier–Stokes equations. We start by considering
disturbances with only spanwise vorticity initially and then proceed to disturbances in
which an initial normal vorticity is included. Although these two types of disturbances
do indeed evolve independently in the linear regime, it is the combined response that
determines whether or not the overall growth is such that it violates the assumptions
of linearity. Thus if very large relative growth is achieved in one mode, it does not
necessarily mean that a very large relative growth will be achieved when the two
modes are combined appropriately.

To start the optimization scheme, we consider the total solution u = (ŭ, v̆, w̆) to be
the sum

u(y, t) =

N∑
k=1

(ak + ibk)uk(y, t), (29)

with each of the vectors uk(y, t) representing a solution to equations (12) and (13)
subject to the initial conditions

u(y, 0) =

 cosφ∂v̆k/∂y
iγ̃ v̆k
sinφ∂v̆k/∂y

(30)

where v̆k(0, t) are some set of functions defined below. In order to maximize the
growth function, it is sufficient to maximize the energy,

E(t) =

∫ ∞
0

(u(y, t)− u∞) · (u∗(y, t)− u∗∞) dy (31)

subject to the constraint

E(0) = 1.

Therefore, using Lagrange multipliers to maximize the function

Ḡ(t) =

∫ ∞
0

(u(y, t)− u∞) · (u∗(y, t)− u∗∞) dy

−λ
(∫ ∞

0

(u(y, 0)− u∞) · (u∗(y, 0)− u∗∞) dy − 1

)
, (32)

requires

∂Ḡ

∂ak
= 0,

∂Ḡ

∂bk
= 0, k = 1, 2, · · · , N.
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Figure 3. Third orthogonal function: (a) Subspace 1, (b) Subspace 2, (c) Subspace 3.

The set of equations thus derived results in a 2N×2N generalized eigenvalue problem.
A search over the eigenvectors gives the initial condition with initial unit energy that
maximizes the function Ḡ at time t.

Various initial conditions are used to explore transient behaviour at subcritical and
supercritical Reynolds numbers. Since only a finite number of normal modes exists
for the boundary layer, there does not exist a complete discrete set of orthogonal
functions, square integrable over (0,∞) in the sense of (26) with the function and
its first derivative zero at the plate that can completely describe all possible initial
conditions. For this reason we shall consider three subspaces that satisfy the boundary
condition (14) at the plate and have different characteristics at infinity.

The first subspace is spanned by the set of functions

vn =

[
y − sin(nπy)

nπ

]
e−y

2

, n = 1, 2, 3, · · · , (33)

which decay rapidly to zero at infinity. This subspace is chosen to represent disturb-
ances that are non-zero inside the boundary layer and essentially zero outside the
boundary layer.
The second subspace is spanned by the set of functions

vn =

[
y − sin(nπy)

nπ

]
e−y, n = 1, 2, 3, · · · , (34)

is similar to the first subspace except that the functions decay more slowly as y →∞.
This subspace is chosen to represent disturbances which are non-zero inside the
boundary layer and at the edge of the boundary layer. The set of functions defined
by the bracket term are known as the Figer functions.
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Figure 4. (a) Normalized energy function G versus mode number N at t = 65 using subspace 2 as
initial conditions. Asterisks for individual modes, circles for optimization using N modes. Re = 600,
γ̃ = 0.9, and φ = 0◦ (b) Magnitude of optimal coefficients for (a) with N = 10. (C) Same as (a) with
t = 200 and φ = 90◦. (d) Magnitude of optimal coefficients for (a) with N = 5.

The third subspace is spanned by the set of functions

vi =

∫ y

0

Hi(ȳ)e−ȳ
2/2 dȳ, i = 1, 3, 5, · · · , (35)

where Hi are the Hermite polynomials. Only the odd Hermite polynomials are
taken since they vanish at the plate. This set is only bounded at infinity and thus
explores disturbances which are non-zero in the free stream.

From each subspace, an orthonormal set for the initial condition {v̌n(u, 0), n = 1, 2, . . .}
is created by the Gram–Schmidt process. The third function from each orthonormal
set is shown in figure 3.

For the integration of (13) the initial condition w̃ = 0 is chosen for the results
presented below. In a separate subsection we shall relax this last initial condition and
examine the effect of initial normal vorticity on the growth of the perturbation energy
density.

5.2.1. Zero initial normal vorticity

To illustrate the optimization procedure, we first perform the calculations for the
following two cases using the initial conditions as specified by subspace 2. The first is
the computation of a optimal two-dimensional initial conditions for γ̃ = 0.9, φ = 0◦
and Re = 600 (discrete stable modes). In figure 4(a) we show the growth factor at
t = 65 for each individual mode as well as for the optimal solution for various values
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Figure 5. Optimized maximum of normalized energy function G over time. Values of G for each
contour from left to right: 100, 101, 102, . . . , 107. (a) Subspace 1, (b) Subspace 2, and (c) Subspace 3.

of N. Note the rapid convergence as N → ∞. In figure 4(b) the magnitudes of the
coefficients which produce the optimum with N = 10 are shown. The contribution
from the higher modes does not significantly affect the optimal initial conditions. The
second calculation is for an optimal three-dimensional disturbance. The parameters
chosen are Re = 600, γ̃ = 0.9 and φ = 90◦ (no discrete modes). The results are shown
in figure 4(c) and Figure 4(d) at t = 200. Both plots illustrate the advantage of using
orthogonal functions for the initial conditions in that the first few modes display
almost entirely the optimal solution, while the magnitudes of the coefficients of the
optimal solution are bounded above by one and decay rapidly to zero.

The results presented above determine the maximum of G at a particular time and
do not determine the maximum of G for all time. Consequently, results for the global
optimum in the (γ̃, Re)-plane for three-dimensional disturbances are discussed next. At
each Reynolds number, and at each value of 0 < γ̃ < 1.4, the global maximum of G
over time is found and denoted by Gopt. Contour plots of Gopt are then constructed in
the (γ̃, Re)-plane. Figure 5 shows the global optimum for each of the three subspaces.
Also shown is the unstable region (shaded) for two-dimensional normal modes as
computed from the Orr–Sommerfeld equation. For a given subcritical Reynolds
number, disturbances from subspace 3 that are non-zero in the free stream allow
greater transient growth than disturbances from subspace 1 and subspace 2 which
decay rapidly in the free stream (compare figure 5c to figure 5a and figure 5b).
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To further illustrate the differences between the three subspaces, figure 6(a) shows
the optimal growth function G against time for φ = 90◦, Re = 103 and γ̃ = 0.65. These
values were chosen so as to compare with the results of Butler & Farrell (1992) where
it was shown that the global optimal Gopt = 1514 for a three-dimensional disturbance

at Re = 103 occurs for γ̃ = 0.65 at t = 778
√

2. The global optima determined here are
as follows: for subspace 1, Gopt = 20.4; for subspace 2, Gopt = 157.4; and for subspace
3, Gopt = 1472.1. Clearly, the growth is smaller for disturbances confined within the
boundary layer as compared to the growth for disturbances which are bounded at
infinity. Indeed, using only the first mode for subspace 3 produces about 93% of the
optimum growth reported by Butler & Farrell using only an approximation to a true
continuum for their boundary layer calculations. This is a strong indication that in
any bypass transition mechanism that is proposed, the effects of the continuum must
to be considered.

5.2.2. Non-zero initial normal vorticity

Since the large transient growth presented above for three-dimensional disturbances
is a direct result of the growth of normal vorticity, it is necessary to ask whether
the growth is a special case caused by neglecting the initial normal vorticity or will
the growth in energy remain once the energy of non-zero initial normal vorticity is
included in the calculation. Therefore, we present the results for three different initial
specifications of w̃, namely

CASE I: w̃ = 0

CASE II: w̃ = Aye−y,
CASE III: w̃ = Aye−y

2

.

Each case satisfies the no-slip boundary condition at the plate. The first case has
already been discussed above and is repeated here for comparison purposes. The
other two cases differ in their decay rates at infinity. The initial condition for v̆ is
chosen to be the first mode of subspace 3 which produces near-optimal transient
growth. Figure 6(b) shows the normalized perturbation energy G as a function of
time for each of the three cases with γ̃ = 0.65, Re = 103, φ = 90◦ with A = 1 and
A = 10. The results suggest that algebraic growth, as measured here, is sensitive to
the presence of any initial normal vorticity, specifically to the inclusion of the energy
associated with the initial normal vorticity in the normalization of the growth factor.
The transient growth is significantly reduced when A = 10. If the amplitude A is
increased further, the flow would become algebraically stable. This effect is shown for
initial conditions that produce near-optimal transient growth. For initial disturbances
confined to the boundary layer, the effect of non-zero initial normal vorticity is even
more dramatic and a much lower value of the amplitude A is necessary for the flow to
become algebraically stable. This phenomenon is discussed further in the next section.

6. Analytical evaluation of the early period
It is always desirable, if possible, to have some form of an analytical solution to a

problem that has been solved numerically. Then, as questions arise about the solution,
an alternative approach is available to help gain additional insight. The details and
the procedure needed to examine the initial-value problem for the boundary layer,
as presented here, have been provided by Grosch & Salwen (1978) and Salwen &
Grosch (1981). These works employ the traditional modal approach, i.e. travelling-
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Figure 6. (a) Normalized energy function G versus time for optimal initial conditions: (1) subspace
l, (2) subspace 2, and (3) subspace 3. Re = 103, γ̃ = 0.65, and φ = 90◦ corresponding to the case of
Butler & Farrell (1992). (b) Plot of normalized energy function G versus time for zero and non zero
initial normal vorticity. Re = 103, γ̃ = 0.65, and φ = 90◦. Largest growth for case I; larger dashes
for case II with A = 1 and A = 10; and smaller dashes for case III with A = 1 and A = 10.

wave solutions are used as the means of reducing the partial differential equation
to the Orr–Sommerfeld ordinary differential equation. A thorough discussion of the
eigenvalues and expansions of arbitrary functions in terms of the eigenfunctions
ensues with particular emphasis given to the existence of a continuous spectrum
in addition to the more familiar discrete spectrum. Even though this work clearly
provides the essential elements, difficulties remain when actually performing the tasks
required and they are made even more intractable by the inclusion of the role of
three-dimensionality. Still, the importance of these works cannot be under emphasized.
Since there are only a finite number of discrete eigenmodes for the boundary layer
(Mack 1976), with the number depending upon the value of the Reynolds number, it
is clear that no arbitrary initial-value calculation can be made without the addition
of the continuous spectrum and the early period dynamics are closely tied to the
contribution of the continuous spectrum.

In determining an analytical solution for perturbations in parallel shear flow, often
the starting point is to consider the prototypical governing equations known as the
Orr–Sommerfeld and the Squire equations. In this system, even when investigating the
full three-dimensional problem, the first of these equations is completely uncoupled
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and is only fourth order. Hence, the second equation must be second order and
contains an inhomogeneous term due to the interaction of the solutions of the Orr–
Sommerfeld part of the system with the mean flow. This inhomogeneity, known as
vortex tilting, indicates a possibility for resonance when using the conventional modal
form of travelling waves for solving the partial differential equations. This point has
been exploited by Gustavsson (1979) and Gustavsson & Hultgren (1980) for channel
flows while Benney & Gustavsson (1981) considered the case of the boundary layer.
In channel flow, such a resonance with damped modes was shown to be possible,
thus creating the possibility of temporal behaviour that is algebraic. The numerical
calculations of Gustavsson & Benney indicate, however, that direct resonance between
discrete modes does not occur in the boundary layer. As a result, the only bases for
algebraic behaviour in the boundary layer must rest with (a) the additional continuous
spectrum and (b) the fact that the differential equations are not self-adjoint (Reddy
& Henningson 1993; Trefethen et al. 1993, among others).

It should be emphasized that it is the transient period of the dynamics that
is the central issue. There are no conflicts or difficulties with the asymptotic fate
of disturbances because any growing normal mode will dominate (in the unstable
regions) as time gets large. In this sense, very few modes need be computed to obtain
such knowledge. In fact, for the boundary layer there is only one amplified mode in
the discrete spectrum with all the rest damped for most Reynolds numbers (assuming
a solid wall). However, for an initial-value problem, inclusion of the damped modes is
critical for an arbitrary specification. The use of Laplace transforms in time to reduce
the system to ordinary differential equations and the same eigenvalue problem is an
alternative that has been used by Gustavsson (1979) and Hultgren & Gustavsson
(1980). When done, it shows that the normal modes are those corresponding to
poles in the complex plane with a branch cut providing the continuous spectrum.
Unfortunately, even though this approach captures all essentials of the mathematics,
one is still left with the same basic differential equations that must be solved for
an initial-value calculation. Also, because of the inability to obtain any closed form
representation, a thorough assessment of details is difficult to obtain.

The works of Criminale & Drazin (1990, 1998) suggest alternative means to that
of the travelling wave hypothesis for examining a very general solution to the initial-
value problem (in fact, exact solutions to the full Navier–Stokes equations), but it is
limited to mean profiles that vary only linearly in the relevant independent variable
(constant shear). Thus, although important observations are possible using such an
approach, any effects that are due to a continuously varying mean profile that solve
the mean flow equations are lost when using this scheme.

The numerical schemes used here for solving the partial differential equations
directly circumvent many of the difficulties of normal mode analysis and are not
limited to linear profiles as is the work of Criminale & Drazin. Still, it would be
beneficial if this work could be supplemented with some analysis; one such means is
suggested here.

We find it enlightening to use the moving coordinate transformation that was
employed by Criminale & Drazin (1990, 1997) in order to solve the linear partial
differential equations. Thus, let

T = t, ξ = x−U(y)t, η = y, and ζ = z. (36)

This change of variables is not the well known shift from an Eulerian to a Lagrangian
frame of reference but it does provide a means of simplifying and evaluating the
early-time behaviour analytically. The governing equations in terms of the vertical
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component of the perturbation velocity, v, and the normal perturbation vorticity,
ωy = ∂u/∂z − ∂w/∂x, become

∂∇2v

∂T
− d2U

dη2

∂v

∂ξ
= ε∇2∇2v (37)

and
∂ωy

∂T
− ε∇2ωy =

dU

dη

∂v

∂ζ
(38)

with

∇2 =
∂2

∂ξ2
+

∂2

∂η2
+

∂2

∂ζ2
+ T 2

(
dU

dη

)2
∂2

∂ξ2
− 2T

dU

dη

∂2

∂η∂ξ
− T d2U

dη2

∂

∂ξ
,

and ε = R−1
δ∗ .

A Fourier decomposition in the new variables ξ, ζ is taken, thus reducing the
problem to the initial-value, boundary-value scenario that is traditional except that
the ξ, ζ variables are not the same as x, z and the equations remain partial differential
equations.

In terms of the new variables the Fourier transform is given by

v̌(α, η, β, T ) =

∫ +∞

−∞

∫ +∞

−∞
v(ξ, η, ζ, T )ei(αξ+βζ)dξdζ, (39)

and the governing equations can be written as

∂∆v̌

∂T
+ iγ̃ cosφ

d2U

dη2
v̌ = ε∆∆v̌ (40)

and
∂w̃

∂T
− ε∆w̃ = sinφ

dU

dη
v̌ (41)

where

ω̌y = iγ̃w̃, γ̃2 = α2 + β2, and tanφ = β/α (42)

have been used. The Laplacian in the new variables is

∆ =
∂2

∂η2
+ i2γ̃ cosφT

dU

dη

∂

∂η
− γ̃2 − γ̃2T 2 cos2 φ

(
dU

dη

)2

+ iγ̃ cosφT
d2U

dη2
. (43)

Solutions of this set of equations must be solved subject to the boundary conditions

v̌ =
∂v̌

∂η
= w̃ = 0 at η = 0 (44)

and v̌, vη , and w̃ bounded as η →∞.
The shift to the moving coordinates suggests at least one means for investigating

details of an initial-value problem under arbitrary specifications. For example, in this
frame of reference it can be seen that there is mathematically no critical layer that is
so common to normal modes. This observation removes one difficulty, but it remains
a singular perturbation problem in the limit ε → 0. However, from numerical work,
it is known that much of the relevant behaviour that is under investigation here is
found for small values of the polar wavenumber, γ̃. In addition, this parameter range
includes the region of instability. Thus it is reasonable that the polar wavenumber
can be exploited as a small parameter rather than ε. By accepting this as a basis,
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the problem is changed from a singular to one of a regular perturbation expansion.
Moreover, a solution to the partial differential equations can be found directly. One
criticism of this approach is that the solution will be valid only for small to order-one
values of time, owing to the presence of the products of γ̃T in the governing equations.
However, the region of validity is exactly the time regime that is of such importance
to resolve and is the most difficult to analyse with a modal approach. This approach
is not without its difficulties; care must be taken in order to satisfy the conditions
at infinity and all of the details will be provided below. One major result of using
this approach is that the sensitivity of the energy growth to the inclusion of non-zero
initial normal vorticity is readily explained.

To proceed with the analysis, assume that γ̃ � 1 and that the dependent variables
are expanded in a perturbation series as

v̌ = v̌0 + γ̃v̌1 + γ̃2v̌2 + . . . , w̃ = w̃0 + γ̃w̃1 + γ̃2w̃2 + . . . . (45)

In a similar manner the operator, ∆, is written as

∆ = ∆0 + γ̃∆1 + γ̃2∆2 (46)

with

∆0 =
∂2

∂η2
, ∆1 = i cosφT

(
2

dU

dη

∂

∂η
+
d2U

dη2

)
, and ∆2 = −

[
1 + cos2 φT 2

(
dU

dη

)2
]
.

(47)

After substituting (45)–(47) into equations (40) and (41) and collecting terms of equal
order, the sequence becomes for O(1):

∂

∂T
∆0v̌0 = ε∆0∆0v̌0, (48)

∂w̃0

∂T
− ε∆0w̃0 = sinφ

dU

dη
v̌0; (49)

and for O(γ̃):

∂∆0v̌1

∂T
− ε∆0∆0v̌1 = −i cosφ

d2U

dη2
v̌0 − ∂

∂T
∆1v̌0 + ε[(∆0∆1 + ∆1∆0)v̌0]. (50)

∂w̃1

∂T
− ε∆0w̃1 = sinϕ

dU

dη
v̌1 + ε∆1w̃0. (51)

The problem requires an initial specification. In the previous sections, an initial
normal velocity was specified. This was really just a matter of mathematical and
computational convenience. All choices were consistent with the proper choice of
an initial specification which is in terms of an initial vorticity (Salwen & Grosch
1981). By examining the physics, this is indeed found to be reasonable. The laminar
boundary layer (per se) is created by the sudden input of vorticity at the leading
edge and the subsequent flow then becomes a balance between the advection of the
vorticity downstream with the diffusion in the direction normal to the flat plate.
And, for the basic problem, there is only the one component of the vorticity in the
z-direction. It is thus convenient to put the perturbation problem on the same basis by
specifying the vorticity at time t = 0. That this is mathematically proper can be seen
by noting that, although the two governing equations are presented in terms of the
velocity components, these equations are actually those governing the perturbation
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vorticity and are obtained by eliminating the pressure. Indeed, the Squire equation
directly governs the normal vorticity component. Furthermore, by using the moving
coordinates and the Fourier transforms, the expression

∇2v =
∂ωz

∂x
− ∂ωx

∂z
(52)

becomes

∆v̌ = iγ̃(sinφω̌x − cosφω̌z).

Thus, in wave space, ∆v̌ is proportional to the vorticity components in the plane
perpendicular to ω̌y . The most general initial conditions can thus be represented by
two independent modes of vorticity:

∆v̌ = iγ̃Ωt(γ̃, η, φ), w̃ = 0 (53)

and

∆v̌ = 0, w̃ =
Ωn(γ̃, η, φ)

iγ̃
. (54)

A further kinematic constraint that the initial vorticity be solenoidal implies that
the former condition has no initial normal vorticity component, whereas the latter
condition does indeed have an initial tangential component of vorticity, but it is
perpendicular to the initial tangential vorticity represented by the former condition.
The solution to the latter vorticity mode requires only the solution to the Squire
equation.

In considering the scalings in γ̃ for the initial vorticity, it has been assumed that
the actual vorticity components ωx and ωz are of order one. Thus, it is noted that Ωt
must be an O(1) quantity while Ωn must be O(γ̃) which is the same as specifying w̃ as
O(1).

By using the above relation and the definitions for the series expansions and
assuming that Ωt can also be expanded in an appropriate power series, then

∆0v̌0 = 0 and ∆0v̌1 = Ω0
t (η, φ) (55)

become the initial conditions for the first of the two governing equations.
It can be seen that the only solution for v̌0 that meets the boundary conditions

with no input initially is v̌0 ≡ 0. Then, moving to O(γ̃), the homogeneous partial
differential equation

∂

∂T

(
∂2v̌1

∂η2

)
− ε ∂

∂η2

(
∂2v̌1

∂η2

)
= 0 (56)

must be solved for v̌1.
To proceed, some assumption must be made about the specification of Ωt(γ̃, η, φ).

While it is desired that this initial specification should, in some sense, be allowed
to be completely arbitrary, it is determined that the nature of the conditions that
must be met by the normal velocity impose certain restrictions on Ωt(γ̃, η, φ) (see
Lighthill 1963). Fortunately, these restrictions can still be met while allowing for the
appropriate degree of arbitrariness. If it is assumed that the leading order of the
initial vorticity decays sufficiently as η →∞ then Ωt can be formally written as either
a Fourier cosine or a Fourier sine integral. If the latter is chosen, then the diffusion
equation for v1ηη can be solved subject to the specified initial condition. However, the
Fourier sine integral implies that there is no vorticity at the wall which is certainly
unphysical since the wall is a source of vorticity.
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Conversely, if the initial condition is written as the Fourier cosine integral,

∆0v̌1|T=0 = Ω0
t (η, φ) =

2

π

∫ ∞
0

Ω̄0
t (β) cos βη dβ (57)

at time T = 0, then this choice is consistent with a small-γ̃ expansion of the pressure
equation that requires that

∂3v̌

∂η3
∼ O(γ̃2). (58)

We note that allowing Ω̄0
t (β) to depend on φ will not change the analysis. Thus, it is

determined that
∂2v̌1

∂η2
=

2

π

∫ ∞
0

Ω̄0
t (β)e−εβ

2T cos βη dβ (59)

for all time. A single integration in η introduces a pole at β = 0 which implies a
non-zero value of v1η in the far field at time T = 0. The only way to satisfy both
v1η = 0 at η = 0 and v1η → 0 as η →∞ for all time is to require that

Ω̄0
t (0) = 0. (60)

This additional requirement on the initial specification seems to violate the spirit of
seeking a solution subject to an arbitrary initial specification; however, for a given
arbitrary function F(η), a consistent initial specification of vorticity can be found as

Ω0
t (η) = F(η)−

∫ ∞
0

F(η̂) dη̂ δ(η) (61)

where it follows that

Ω̄0
t (β) = F̄(β)− F̄(0). (62)

From this, it is seen that the wall does indeed act as a source of vorticity as it should.
With the issue of the initial specification resolved, the integral representations of the
solution are found to be

∂v̌1

∂η
=

2

π

∫ ∞
0

Ω̄0
t (β)e−εβ

2T sin βη

β
dβ (63)

and

v̌1 =
2

π

∫ ∞
0

Ω̄0
t (β)e−εβ

2T (1− cos βη)

β2
dβ. (64)

From this result, it can be determined that

v̌1 =
2

π

∫ ∞
0

Ω̄0
t (β)e−εβ2T

β2
dβ (65)

as η → ∞. Thus, it is seen that the leading-order solution might have a non-zero
normal velocity in the free stream. This also implies that the vorticity is a non-
zero, O(γ̃2) quantity in the free stream. Again, this does not seem to allow for the
appropriate degree of arbitrariness in the specification of the initial vorticity. However,
by considering the solution to depend on more than one length and time scale, it is
possible to find a solution to the problem where the initial vorticity decays in the free
stream.

In considering the solution to the normal vorticity (the Squire mode) induced by
three-dimensional effects, it is clear that the mean velocity must now be incorporated
for the first time. In particular, U ′(η) is required. The traditional representation for
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the Blasius profile is not easily suited to this task and therefore a substitution will
be used. For this purpose, the exponential series provides an excellent basis for the
development of an analytical solution. Thus, consider the exponential series

U(η) = 1− ae−ση − be−2ση − ce−3ση − de−4ση − . . . , (66)

where σ = U ′(0) ≡ 0.33206 is the value of the shear determined from the Blasius
profile. For purposes of comparison, an eigenvalue computation should be made
to determine the differences resulting from this profile and that of Blasius. As the
number of terms retained in the series increases the accuracy in the numerical value of
the eigenvalue improves, but there is not a corresponding improvement in qualitative
features of the flow. It is determined that three to four terms are adequate for most
of the essentials. On the other hand, the use of the full series is not necessary for the
analytical evaluation of the equations because they are linear. Indeed, one exponential
term will provide an adequate basis for assessing the initial period of the dynamics.
Incorporating more terms of the mean flow series can be done by inference. After
making the substitutions and noting the results for v̌0 and v̌1, the equation to be
solved becomes

∂w̃1

∂T
− ε∂

2w̃1

∂η2
= aσsinφe−ση

2

π

∫ ∞
0

Ω̄0
t (β)e−εβ

2T 1− cos βη

β2
dβ. (67)

A particular solution is

w̃
p
1 = −aσsinφe−ση

2

επ

∫ ∞
0

Ω̄0
t (β)e−εβ

2T

×
(

2 sin βη

σβ(σ2 + 4β2)
+

1− cos βη

β2(σ2 + β2)
+

3 cos βη

(σ2 + β2)(σ2 + 4β2)

)
dβ. (68)

The homogeneous solutions that must be superimposed on the particular solution in
order to satisfy the boundary condition at the wall as well as the initial condition are

w̃H1

1 = aσsinφ
2

επ

∫ ∞
0

H(β)e−εβ
2T cos βη dβ (69)

and

w̃H2

1 = aσsinφ
2

επ

∫ ∞
0

I(β)e−εβ
2T sin βη dβ (70)

with

H(β) =
3Ω̄0

t (β)

(σ2 + β2)(σ2 + 4β2)
.

Setting w̃ = 0 at T = 0 determines that I(β) is the Fourier sine transform of
−(w̃H1

1 +w̃p1). The above represents an exact solution, and in theory the quadratures can
be completed once the initial vorticity is specified. If the initial vorticity specification
is in terms of known functions whose Fourier cosine transforms are relatively simple,
then the quadratures might be done with the aid of extensive tables. However, it
is certainly sufficient to specify the initial vorticity and then to resort to numerical
quadrature to determine the solution.

Now the solution produced by specifying the normal vorticity at T = 0 is examined.
As previously mentioned, this requires only the solution to the partial differential
equation corresponding to the Squire mode. Since in wave space the normal vorticity
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is proportional to the tangential velocities, the initial specification must be zero at the
wall and is therefore written in terms of the Fourier sine transform or

Ωn(γ̃, η, φ) = iγ̃
2

π

∫ ∞
1

Ω̄1
n(β) sin βη dβ + o(1). (71)

The solution is just

w̃0 =
2

π

∫ ∞
0

Ω̄1
n(β)e−εβ

2T sin βη dβ. (72)

Here we see that an order-γ̃ initial normal vorticity produces an O(1) velocity.
By examining the perturbation energy dependence on the normal vorticity, w̃ =

w̃0 + γ̃w̃1, it is evident why the algebraic growth is sensitive to the inclusion of non-
zero initial normal vorticity. When considering initial vorticities scaled as above, the
leading-order expression for G is

G ∼

∫ ∞
0

(Ω̄1
n(β))2e−2εβ2T dβ + O(γ̃2)∫ ∞

0

(Ω̄1
n(β))2 dβ + O(γ̃2)

. (73)

However, when Ωn(γ̃, η, φ) = 0 and therefore w̃0 = 0, the leading-order expression
for G is

G ∼

∫ ∞
0

(
1 + β

β2
Ω̄0
t (β)

)2

e−2εβ2T dβ +
π2

4

∫ ∞
0

|w̃1| dη∫ ∞
0

(
1 + β

β2
Ω̄0
t (β)

)2

dβ.

(74)

In the first instance, G shows only decay to leading order. In the latter instance, the
growth of w̃1 is included in the leading order and thus there is algebraic instability.
Therefore, it is seen that the case of zero initial normal vorticity is a singular case in
the limit γ̃ → 0.

Since an analytic solution has been developed, it is necessary to compare against
the numerically produced solution in the appropriate limit. Figure 7(a) shows the
solution for w̃1 for the parameter values γ̃ = 0.01, ε = 0.002, φ = 90◦ to T = 8000
and F(η) = η2e−η2

. It is seen that all qualitative features of the solution are properly
captured by the leading-order solution (69) shown as the solid lines. Quantitatively,
the leading-order solution loses accuracy as T increases which must be the case.
Figure 7(b) and figure 7(c) show the solution to the same initial condition for values
to γ̃ = 0.5, for T = 10 and T = 100. Even for this relatively large value of γ̃, the
small-γ̃ solution is still apparently valid.

7. Direct numerical simulation
In the previous sections, the temporal evolution of disturbances for the boundary

layer flow have been presented. However, the boundary layer flow is truly investigated
only in terms of a spatially-evolving flow. Unless a connection between the temporal
and the spatial evolutions can be established, it will always be necessary to use the
more difficult and expensive spatial calculations rather than the efficient temporal
calculations. That there is such a connection for an unstable Tollmien–Schlichting
wave is well known and is referred to as the Gaster transformation. No such relation
has ever been shown for the transient period of the boundary layer. However, we have
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Figure 7. Comparison of analytical solution in the limit γ̃ → 0 (solid lines) and numerical solution
(dashed lines). (a) γ̃ = 0.01 and T = 10, 100, 500, 1000, 2000, 4000 and 8000. (b) T = 10 and
γ̃ = 0.01, 0.02, 0.05, 0.1, 0.2 and 0.5 (c) Same as (b) with T = 100.

previously discovered evidence of such a connection during the transient period for
channel flow (Criminale et al. 1997). In what follows, evidence for such a connection
in boundary layer flow is presented.

The numerical techniques required for the simulation and the disturbance forcing
are briefly discussed below. For a detailed description of the spatial direct numerical
simulation of the Navier–Stokes equations (DNS) approach used for this study, refer
to Joslin, Streett & Chang (1992, 1993). The instantaneous velocities ũ = (ũ, ṽ, w̃) and
the pressure p̃ are decomposed into steady base and disturbance components. The
base flow is given by velocities U = (U,V ,W ) and the pressure P ; the disturbance
is given by velocities u = (u, v, w) and the pressure p. The velocities correspond to
the coordinate system x = (x, y, z), where x is the streamwise direction, y is the wall-
normal direction, and z is the spanwise direction. The base flow for the flat plate can be
reasonably approximated by the Blasius similarity solution and the disturbance flow
is found by solving the three-dimensional, incompressible Navier–Stokes equations.
These equations are the momentum equation

∂u

∂t
+ (u · ∇)u+ (U · ∇)u+ (u · ∇)U = −∇p+

1

Re
∇2u, (75)
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and the continuity equation

∇ · u = 0. (76)

The boundary conditions in the far field are

u→ 0 as y →∞ (77)

and the conditions at the wall are

u = 0 at y = 0. (78)

For parallel calculations, U is assumed to be a function of y only, and for non-parallel
calculations U and V are functions of both x and y.

To solve equations (75) and (76) computationally, the spatial discretization entails
a Chebyshev collocation grid in the wall-normal direction, fourth-order finite differ-
ences for the pressure equation, sixth-order compact differences for the momentum
equations in the streamwise direction, and a Fourier sine and cosine series in the
spanwise direction on a staggered grid (Joslin et al. 1993). For time marching, a
time-splitting procedure is used with implicit Crank–Nicolson differencing for normal
diffusion terms and an explicit three-stage Runge–Kutta method (Williamson 1980).
The influence-matrix technique is employed to solve the resulting pressure equation
(Helmholtz–Neumann problem) (Streett & Hussaini 1991; Danabasoglu, Biringen &
Streett 1991). At the inflow boundary, the perturbation used corresponds to that
used in the theory with an imposed initial amplitude of 10−7 such that the transient
disturbance remains small so that comparisons to linear theory can be made. At
the outflow, the buffer-domain technique of Streett & Macaraeg (1989) is used. The
numerical code was run for sufficient time such that steady state has been achieved
in a region which includes all of the relevant spatial growth.

The simulations used a grid of 1981 streamwise, 61 wall-normal, and 5 spanwise
grid points (spanwise symmetric). The far-field boundary is located 50 displacement
thicknesses from the wall, the streamwise distance is 1925 displacement thicknesses
from the inflow, and the spanwise distance is 2π/β. Both the wavenumber β and
the Reynolds number were varied for the test cases listed in table 2. For the time
marching, a time-step size of 0.5 is chosen for the three-stage Runge–Kutta method.
Each computation required approximately 20 Cray Y/MP hours using a single
processor to converge to a time-invariant solution. The choice of grid, computational
domain size, and time-step size were based on previous experience described in Joslin
et al. (1992, 1993). A grid refinement was performed by decreasing the domain size
(as opposed to conventional increasing the number of grid points) to verify that
grid-independent solutions were obtained.

Figures 8(a), 8(b) and 8(c) show the normalized energy density Es as a function
of streamwise distance x, calculated at steady state for γ̃ = 0.65 and three values
of the Reynolds number Re. The initial condition is chosen to be the first mode
of subspace 2 given in (34). As suggested from temporal theory, there is significant
transient growth and subsequent decay. Also shown in this figure as a dashed curve
is the normalized energy ET from the temporal solutions scaled in such a way that
both the amplitude and location of the maxima coincide. To properly match with the
Es from the DNS calculations, ET is defined as follows:

ET =

∫ ∞
0

[|(ŭ− ŭ∞)2|+ |(v̆ − v̆∞)2|+ λ2|(w̆ − w̆∞)2|] dy, (79)
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Case Subspace Re β ai bi

1 2 500 0.65 0.766 0.634
2 2 1000 0.65 0.768 0.636
3 2 1500 0.65 0.770 0.636
4 2 500 0.80 0.624 0.714
5 2 1500 0.80 0.626 0.715
6 2 500 0.95 0.544 0.774
7 2 500 1.20 0.473 0.857
8 2 500 1.40 0.443 0.916
9 2 500 2.00 0.401 1.079

Table 2. Test cases for theoretical validation with DNS.

(a)

(b)

(c)

(d)

(e)

( f )

250

200

150

100

50

0 600 1200 1800

250

200

150

100

50

0 600 1200 1800

0 600 1200 1800 0 600 1200 1800

0 600 1200 1800 0 600 1200 1800

200

400

600

800

1000

2000

1600

1200

800

400
400

800

1200

x x

Es

Es

Es

2500

2000

1500

1000

500

Figure 8. Normalized energy density Es vs. streamwise distance. Spatial calculations (solid) com-
pared with scaled temporal calculations (dashed). Initial condition is first mode of subspace 2 and
φ = 90◦. (a) R = 500 and γ̃ = 0.65, (b) R = 1000 and γ̃ = 0.65, (c) R = 1500 and γ̃ = 0.65, (d)
R = 500 and γ̃ = 0.8, (e) R = 1500 and γ̃ = 0.8, and (f) R = 1000 and γ̃ = 0.65 using subspace 3.

where

λ = δ∗2γ̃2/(2π),

scaled in such a way that ET = 1 at t = 0. The temporal results are obtained by
solving equations (12) and (13) subject to the same initial conditions. The temporal
results were scaled as follows:

x = ait, ET = biE(t), (80)
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Figure 9. Comparison of spatial and temporal growth rates for Re = 103. (a) Transformation does
not hold for small x. (b) Transformation does hold over the region where transient growth is a
maximum. (c) Values of ai, solid line is empirical fit given by (83), circles, Re = 500. (d) Values
of bi.

where the scaling constants ai and bi are given in table 2 for each case listed. As can
be seen, there is considerable agreement between the two, hinting at the possibility
of a spatial–temporal transformation. Further insight into this possibility is explored
in figures 9(a) and 9(b) where the growth rates as a function of x are shown. The
growth rates for both the spatial and temporal solutions are defined in the following
manner:

1

Es

dEs
dx

= α(x),
1

E(t)

dE(t)

dt
= ω(t). (81)

By using the previous relationship between x and t, the growth rates are identically
zero at the same value of x. A relationship of the form

α(x) =
ω(x/ai)

c
, c = 1, (82)

holds over most of the domain except for the very early transients. This value of
c corresponds to the non-dimensional mean velocity at infinity. To show that the
relationship between ω and α hold throughout other regions in the (α, Re)-plane,
figures 8(d) and 8(e) show results for γ̃ = 0.8. It is interesting to note that a similar
result is found for the channel flow problem but with c = 1/2 (Criminale et al. 1997).
Thus, there is strong evidence of a correspondence between spatial and temporal
calculations for the transients as well as the previously known connection for the
long-time asymptotic solutions given by the Gaster transformation. If a spatial-
temporal relationship could be determined, then the efficient temporal theory could
be used to study the spatial problem at a fraction of the cost of a DNS study.

In figures 9(c) and 9(d), the coefficients ai and bi as functions of β are shown. The
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subspace 2 as initial condition. (b) Streamwise disturbance profiles at the x location where parallel
calculations have their maxima: parallel temporal (dashed), parallel spatial (solid with circles) and
non-parallel spatial (solid with crosses). (c) Spanwise disturbance profiles.

cases for Re = 500 are shown as open circles, while the other cases are shown as
triangles. Surprisingly, all the data fall on an exponential curve, shown as the solid
curve. The curve is given by

x

t
= Ae−Bβ + C, (83)

where

A = −1.1401, B = 0.7360, C = 1.3406.

Therefore, at least for this particular case, a spatial–temporal relationship can be
established.

The above connection applies to other inflow conditions. Figure 8(f) shows the
results of a calculation using inflow conditions from subspace 3 of (35) with R = 103.
This case is different from the previous one in that the inflow disturbances do not
vanish in the free stream. Again, there is excellent agreement between the spatial and
temporal calculations. The results of a non-parallel spatial calculation using inflow
conditions from subspace 2 of (34) are shown in figure 10(a). For comparison, the
results of the parallel calculations previously plotted in figure 8(b) are shown. Note
that the effect of non-parallelism increases the maximum transient growth by over
50%. Thus the concept of algebraic instability, previously explored only for parallel
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flows, is also seen to exist in real flows where the non-parallel nature cannot be
ignored. The reason for the larger growth is shown in figures 10(b) and 10(c) where
the velocity profiles are compared at the x-location where the parallel calculations
have their maxima. The results from the temporal (dashed curve) and the spatial
(solid curve with circles) calculations show excellent agreement in the streamwise
disturbance velocity and qualitative agreement for the spanwise disturbance velocity
which is several orders of magnitude smaller than the streamwise velocity component.
Also shown in this figure are the results from the non-parallel spatial calculations,
shown as a solid curve with crosses. The additional disturbance energy is seen to result
from a broader profile which might be expected since the boundary layer thickness
grows downstream.

8. Conclusions
The Blasius boundary layer in an incompressible viscous fluid subject to the

influence of small perturbations has been investigated. Instead of using the techniques
of classical stability analysis or the more recent techniques involving eigenfunction
expansions, the approach has been to first Fourier transform the governing disturbance
equations in the streamwise and spanwise directions only and then solve the resulting
partial differential equations numerically by the method of lines. Unlike traditional
methods where travelling wave normal modes are assumed for solution, this approach
offers an alternative means whereby arbitrary initial input can be specified. Thus,
arbitrary initial conditions can be imposed and the full temporal behaviour, including
both early-time transients and the long-time asymptotics, can be determined. All
of the stability data that are known for such flows can be reproduced. The details
of the early-time transients are explored by considering a series of initial value
problems. The first set of initial value problems is designed to determine the effect of
disturbance location. For unstable conditions, a localized initial velocity disturbance
always excites the unstable Tollmien–Schlicting wave, even when the disturbance
lies far outside the boundary layer. For stable conditions, the degree of transient
growth is found to depend on the location of the localized disturbance, with localized
disturbances within the boundary layer showing greater transient growth. For fixed
disturbances, the transient growth is seen to depend greatly on the wavenumber. The
next set of initial value problems is designed to determine both the maximum poss-
ible transient growth and the likelihood that such a transient growth would occur for
arbitrary disturbances. For this purpose, an optimization scheme is presented using
three discrete sets of orthogonal functions, each set with a different characteristic
behaviour in the free stream. Using these orthogonal sets, it is determined what type
of initial conditions are necessary to produce almost the same maximum growth
that the governing equations allow. Although these sets are discrete, they are only
used to specify the initial conditions and not to solve the equations; therefore, the
contribution of the continuum to the conditions producing the maximum transient
growth is properly included. Disturbances that are non-zero and non-localized in the
free stream produce the greatest transient growth. However, large transient growth
is to be found only in response to disturbances with zero initial normal vorticity.
When non-zero normal vorticity is included in the initial conditions, the transient
growth is either greatly diminished or eliminated. An analytic theory is presented
that resolves the role of the initial normal vorticity in determining the subsequent
transient growth. Furthermore, the analysis results in a relatively simple solution that
properly accounts for the entire spectrum of eigenfunctions and an explicit solution
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of the Squire equation is found. Finally, direct numerical simulation of the spatial
problem is carried out and compared to the linear temporal theory. It is conclusively
shown that there exists a connection between spatial and temporal calculations even
during the transient period. The theoretical connection suggests that the important
problems of receptivity and control can be explored using a temporal theory, and it
would be expected that the results would then apply to the spatial theory.
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